Seminar on “Applied Statistics for FDA Process Validation” by GlobalCompliancePanel

The stage in which the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing.

The FDA in 2011 provided a guidance titled “Process Validation: General Principles and Practices” for Process Validation in the pharmaceutical industry, during which it established a framework for the same. This framework consists of a three-stage process:

1) Process Design

2) Process Qualification, and

3) Continued Process Verification.

So, what is Process Validation? It is described in Guidance for Industry Process Validation: General Principle and Practices as “…the collection and evaluation of data, from the process design stage through commercial production…” into which the three stages described above are delineated in this Guidance:

Stage 1: Process Design: This is the stage in which commercial manufacturing process is defined, based on knowledge gained through development and scale-up activities

Stage 2: Process Qualification: The stage in which the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing.

Stage 3: Continued Process Verification: Gives the ongoing assurance during routine production that the process remains in a state of control.

While this much is for theory, how do organizations understand the ways to implement these practically? These will be explained in detail at a two-day seminar that is being organized on November 5 and 6 by GlobalCompliancePanel, a leading provider of professional training for the areas of regulatory compliance.

Being organized in Philadelphia, PA, this in person, live seminar will feature the Co-founder and Principal, Adsurgo, Heath Rushing, as the Director. This course has been pre-approved by RAPS as eligible for up to 12 credits towards a participant’s RAC recertification upon full completion. Please register for this valuable learning session by visiting https://www.globalcompliancepanel.com/seminar/applied-statistics-for-FDA-process-validation-901969SEMINAR

—————————————————————————————————————-

The aim of this course is to help its participants understand how to establish a systematic approach for implementing statistical methodologies into a Process Validation program that is consistent with the FDA guidance. The Director will begin with a primer on statistics, at which he will focus on the methods that will be applied in each remaining chapter.

He will then move on to giving an understanding of how to apply statistics for setting specifications and assessing measurement systems (assays), which are considered the two foundational requirements for Process Validation.

In the third and final step, the Director will show how to apply statistics through the three stages of process validation defined by requirements in the Process Validation regulatory guidance documents.

9f3cd3681ada87f9b2feca028f0033bf

He will take up methods recommended by regulatory guidance documents through all these three stages and provide references to the specific citations in the guidance documents.

Heath will explain how to apply statistics for a range of functions. These include how to:

  • Set specifications
  • Assess measurement systems (assays)
  • Use Design of Experiments (DOE)
  • Develop a control plan as part of a risk management strategy
  • Ensure process control/capability.

Although established for the pharmaceutical industry, it is a useful framework for other industries. Analyses in this course use the point-and-click interface of JMP software by SAS.

At this seminar, the Director will cover the following areas:

  • Apply statistics to set specifications and validate measurement systems (assays)
  • Develop appropriate sample plans based on confidence and power
  • Implement suitable statistical methods into a process validation program for each of the three stages
  • Stage 1, Process Design: utilize risk management tools to identify and prioritize potential critical process parameters; and define critical process parameters and operating spaces for the commercial manufacturing process using Design of Experiments (DoE)
  • Stage 2, Process Qualification: assess scale effects while incorporating large (pilot and/or commercial) scale data; develop process performance qualification (PPQ) acceptance criteria by characterizing intra and inter-batch variability using process design data and batch homogeneity studies; and develop an appropriate sampling plan for PPQ
  • Stage 3, Continued Process Verification: develop a control plan as part of a risk management strategy; collect and analyze product and process data; and ensure your process is in (statistical) control and capable.

Pharmaceutical and biopharmaceutical professionals who are involved with product and/or process design, validation, or manufacturing/control, such as Process Scientist/Engineer, Design Engineer, Product Development Engineer, Regulatory/Compliance Professional, Design Controls Engineer, Six Sigma Green Belt, Six Sigma Black Belt, and Continuous Improvement Manager will benefit from this seminar.

US. Customs Import Rules and Export Traps in 2020

You need to have a plan in place and know what you are doing.

FDA and the Customs and Border Patrol Service (CBP) have become increasingly sophisticated and equally demanding in the submission of import information and adherence to government procedures. Firms that fail to understand and properly execute an import and export program find their shipments delayed, detained or refused. As of December 2016, FDA and CBP officially implemented the Automated Commercial Environment (ACE) entry filing system. You either meet ACE requirements or face entry refusals and monetary penalties of up to $10,000 per offense. Other factors can derail the expectation of a seamless import entry process. The course covers detailed information about the roles and responsibilities of the various parties involved with an import operation and how to correct the weakest link(s) in the commercial chain. The course will include tips on how to understand FDA’s thinking, negotiate with the FDA and offer anecdotal examples of FDA’s import program curiosities.

Why you have to study:

What happens when your product is detained? FDA will begin a legal process that can become an expensive business debacle. You must respond fully within short timeframes. This is not the time for you to be on a learning curve. You need to have a plan in place and know what you are doing.

The FDA is steadily increasing the legal and prior notice information requirements. If you do not know what those requirements are and you initiate a shipment, your product is figuratively dead in the water. You must be accurate with the import coding information and understand the automated and human review process. If not, you can expect detained shipments. CBP is implemented a new “Automated Commercial Environment” computer program that changes import logistics and information reporting for FDA regulated products. Your shipment may be stopped before it is even loaded at the foreign port.

When products are refused, you have different options. Some options may cost more than others. For example, your product can be seized and destroyed by the government. You may be fined if you do not act in a timely manner. These are common problems that become prohibitively expensive. You should know how to avoid common problems or at least how to mitigate the cost by using established and effective business planning.

Learn how to deal with common problems, such as returns for repair, importing QC samples, and investigational products

On a positive note, the FDA is implementing the Voluntary Qualification Importer Program under the FDA Food Safety and Modernization Act. One other perk is that FDA offers export certificates, for a modest fee, which may give you a competitive advantage in foreign markets. In some cases, a FDA export certificate is required by foreign governments. Finally, the new EU Medical Device Regulation will change how FDA manages foreign inspections and in your favor.

About the Instructor:

Casper (Cap) Uldriks, owns Encore Insight LLC, which provides consulting services on FDA Law. He brings over 32 years of experience from the FDA. He specialized in the FDA’s medical device program as a field investigator, served as a senior manager in the Office of Compliance and as an Associate Center Director for the Center for Devices and Radiological Health. He developed enforcement actions and participated in the implementation of new statutory requirements. He is recognized as an exceptional and energetic speaker. His comments are candid, straightforward and of practical value. He understands how FDA thinks, operates and where it is headed.

Register here for full details

Applied Statistics for FDA Process Validation

Course “Applied Statistics for FDA Process Validation” has been pre-approved by RAPS as eligible for up to 12 credits towards a participant’s RAC recertification upon full completion.

In Guidance for Industry Process Validation: General Principle and Practices, process validation is defined as, “”…the collection and evaluation of data, from the process design stage through commercial production..” The guidance further delineates the ‘process design stage through commercial production’ into three distinct stages of the product lifecycle:

Stage 1: Process Design: The commercial manufacturing process is defined during this stage based on knowledge gained through development and scale-up activities.

Stage 2: Process Qualification: During this stage, the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing.

Stage 3: Continued Process Verification: Ongoing assurance is gained during routine production that the process remains in a state of control.

The first stage of process validation is process design. The Process Validation guidance document states, “A successful validation program depends on information and knowledge from product and process development. This knowledge and understanding is the basis for establishing an approach to control of a manufacturing process that results in products with desired quality attributes:

Manufactures should:

  • Understand the sources of variation
  • Detect the presence and degree of variation
  • Understand the impact of variation on the process and ultimately on product attributes
  • Control the variation in a manner commensurate with the risk it represents to the process and product.”

The second stage of process validation is process qualification. Although stage 2 has two elements, this course will focus on recommendations for the second element, PPQ. PPQ “combines the actual facility, utilities, equipment (each now qualified), and the trained personnel with the commercial manufacturing process, control procedures, and components to produce commercial batches.” Additionally, the process validation guidance document that “Each manufacturer should judge whether it has gained sufficient understanding to provide a high degree of assurance in its manufacturing process to justify commercial distribution of the product. Focusing exclusively on qualification efforts without understanding the manufacturing process and associated variations may not lead to adequate assurance of quality.”

The third stage of process validation is continued process verification. The process validation guidance document defines the need for this stage: “After establishing and confirming the process, manufacturers must maintain the process in a state of control over the life of the process, even as materials, equipment, production environment, personnel, and manufacturing procedures change.” Manufacturers should use ongoing programs to collect and analyze product and process data to evaluate the state of control of the process. These programs may identify process or product problems or opportunities for process improvements that can be evaluated and implemented through some of the activities described in Stages 1 and 2.”

This course focuses on how to establish a systematic approach to implementing statistical methodologies into a process validation program consistent with the FDA guidance. It begins with a primer on statistics, focusing on methods that will be applied in each remaining chapter. Next, it teaches the application of statistics for setting specifications and assessing measurement systems (assays), two foundational requirements for process validation. Lastly, the course applies statistic through the three stages of process validation defined by requirements in the process validation regulatory guidance documents. Methods taught through all three stages are recommended by regulatory guidance documents; references to the specific citations in the guidance documents are provided.

Why you should attend:

The Food and Drug Administration (FDA) provided a guidance for industry in 2011 that has established a framework for process validation in the pharmaceutical industry. This guidance, titled “Process Validation: General Principles and Practices” consists of a three-stage process. The three stages are 1) Process Design, 2) Process Qualification, and 3) Continued Process Verification.

This course focuses on how to establish a systematic approach to implementing statistical methodologies into a process development and validation program consistent with the FDA guidance. This course teaches the application of statistics for setting specifications, assessing measurement systems (assays), using design of experiments (DOE), developing a control plan as part of a risk management strategy, and ensuring process control/capability. All concepts are taught within the three-stage product cycle framework defined by requirements in the process validation regulatory guidance documents.

Although established for the pharmaceutical industry, it also provides a useful framework for other industries.

Analyses in this course use the point-and-click interface of JMP software by SAS.

Areas Covered in the Session

  • apply statistics to set specifications and validate measurement systems (assays)
  • develop appropriate sample plans based on confidence and power
  • implement suitable statistical methods into a process validation program for each of the three stages
  • Stage 1, Process Design: utilize risk management tools to identify and prioritize potential critical process parameters; and define critical process parameters and operating spaces for the commercial manufacturing process using design of experiments (DOE)
  • Stage 2, Process Qualification: assess scale effects while incorporating large (pilot and/or commercial) scale data; develop process performance qualification (PPQ) acceptance criteria by characterizing intra and inter-batch variability using process design data and batch homogeneity studies; and develop an appropriate sampling plan for PPQ
  • Stage 3, Continued Process Verification: develop a control plan as part of a risk management strategy; collect and analyze product and process data; and ensure your process is in (statistical) control and capable.

Who Will Benefit:

This seminar is designed for pharmaceutical and biopharmaceutical professionals who are involved with product and/or process design, validation, or manufacturing/control.

  • Process Scientist/Engineer
  • Design Engineer
  • Product Development Engineer
  • Regulatory/Compliance Professional
  • Design Controls Engineer
  • Six Sigma Green Belt
  • Six Sigma Black Belt
  • Continuous Improvement Manager

Day 1 Schedule

Lecture 1: Introduction to Statistics for Process Validation

  • principles of process validation
  • stages of process validation

Primer on Statistical Analysis

  • basic statistics

Lecture 2: Primer on Statistical Analysis (cont.)

  • statistical intervals and hypothesis testing

Lecture 3: Primer on Statistical Analysis (cont.)

  • statistical intervals and hypothesis testing
  • ANOVA

Lecture 4: Primer on Statistical Analysis (cont.)

  • regression
  • run charts

Day 2 Schedule

Lecture 1: Foundational Requirements for Process Validation

  • setting specifications
  • analytical methodology

Stage 1 – Process Design

  • steps to DOE
  • screening designs

Lecture 2: Stage 1 – Process Design

  • response surface designs
  • establishing a strategy for process qualification

Lecture 3: Stage 2 – Process Qualification

  • introduction
  • incorporation of large-scale data
  • development of PPQ acceptance criteria
  • development of sampling plans

Lecture 4: Stage 3 – Continued Process Verification

  • statistical process control
  • process capability

Heath Rushing

Co-founder and Principal, Adsurgo

Heath Rushing is the cofounder of Adsurgo and author of the book Design and Analysis of Experiments by Douglas Montgomery: A Supplement for using JMP. Previously, he was the JMP and Six Sigma training manager at SAS. He led a team of nine technical professionals designing and delivering applied statistics and quality continuing education courses. He created tailored courses, applications, and long-term training plans in quality and statistics across a variety of industries to include biotech, pharmaceutical, medical device, and chemical processing. Mr. Rushing has been an invited speaker on applicability of statistics for national and international conferences. As a Quality Engineer at Amgen, he championed statistical principles in every business unit. He designed and delivered a DOE course that immediately became the company standard required at multiple sites. Additionally, he developed and implemented numerous innovative statistical methods advancing corporate risk management, process capability, and validation acceptance criteria. He won the top teaching award out of 54 instructors in the Air Force Academy math department where he taught several semesters and sections of operations research and statistics. Additionally, he designs and delivers short courses in statistics, data mining, and simulation modeling for SAS.

Click Here to Continue Learning

What are the FDA’s Process Validation requirements?

Process Validation (PV), according to the FDA, is collecting and assessing data right from the design stage till the production stage. PV is set out for all the stages of production for a product in the FDA-regulated industries. The core purpose of PV is to establish scientific proof that any process being employed has the capability of delivering quality products consistently.

The FDA’s process validation requirements are set out in its general principles of Process Validation. Starting from 1987, the FDA has been issuing guidelines at intervals to state, improve and strengthen the general principles of Process Validation. In almost a quarter century of the first guideline, the revision of January 2011 came into being. This guideline is considered a landmark and a guide for PV professionals since it reworked extensively and expanded the general principles on process validation. It is the current guideline from the FDA on Process Validation requirements.

These are what the FDA’s 2011 guideline on general principles on Process Validation propagate:

  • Incorporation of the principles of sound science
  • Taking steps to assess and mitigate risk
  • Bringing about improvements in every stage of the process
  • Adapting the science-based principles of contemporary manufacturing
  • Fostering and encouraging innovation

The centrality of control to process validation

Process validation is tied to the product lifecycle approach by the FDA general principles on process validation of 2011. The central purpose of process validation is to ensure that the process is in a state of control at all stages of production.

The following points illustrate the reason for which the FDA expects its PV requirements to be met:

  • Being a process that is ongoing and continuous, PV begins at the earliest stages of production and goes on till the product’s lifecycle is completed
  • Those in charge of commercial production should have deep and intimate knowledge of the workings of PV principles
  • Only this knowledge helps PV professional locate the sources of variability and address them
  • Only PV into which risk management is built frees errors from the product

The three stages of PV

The FDA stipulates three layers or stages on which its general principles of Process Validation are built:

  • Process design: The stage in which the knowledge gained helps the commercial process define the process development activities
  • Process qualification: The stage where PV guarantees that the process design has the capability for being reproduced at industrial level
  • Continued Process Validation: The most important stage PV in that this is where the element of control into the routine production process is introduced and built; Continued Process Validation takes under its ambit all activities such as continuous verification, maintenance, and process improvement. Information is collected and monitored during commercialization to assess the Continued Process Validation stage.

Click Here to Continue Learning

Seminar

Applied Statistics for FDA Process Validation

Course “Applied Statistics for FDA Process Validation” has been pre-approved by RAPS as eligible for up to 12 credits towards a participant’s RAC recertification upon full completion.

In Guidance for Industry Process Validation: General Principle and Practices, process validation is defined as, “”…the collection and evaluation of data, from the process design stage through commercial production..” The guidance further delineates the ‘process design stage through commercial production’ into three distinct stages of the product lifecycle:

Stage 1: Process Design: The commercial manufacturing process is defined during this stage based on knowledge gained through development and scale-up activities.

Stage 2: Process Qualification: During this stage, the process design is evaluated to determine if the process is capable of reproducible commercial manufacturing.

Stage 3: Continued Process Verification: Ongoing assurance is gained during routine production that the process remains in a state of control.

The first stage of process validation is process design. The Process Validation guidance document states, “A successful validation program depends on information and knowledge from product and process development. This knowledge and understanding is the basis for establishing an approach to control of a manufacturing process that results in products with desired quality attributes:

Manufactures should:

  • Understand the sources of variation
  • Detect the presence and degree of variation
  • Understand the impact of variation on the process and ultimately on product attributes
  • Control the variation in a manner commensurate with the risk it represents to the process and product.”

The second stage of process validation is process qualification. Although stage 2 has two elements, this course will focus on recommendations for the second element, PPQ. PPQ “combines the actual facility, utilities, equipment (each now qualified), and the trained personnel with the commercial manufacturing process, control procedures, and components to produce commercial batches.” Additionally, the process validation guidance document that “Each manufacturer should judge whether it has gained sufficient understanding to provide a high degree of assurance in its manufacturing process to justify commercial distribution of the product. Focusing exclusively on qualification efforts without understanding the manufacturing process and associated variations may not lead to adequate assurance of quality.”

The third stage of process validation is continued process verification. The process validation guidance document defines the need for this stage: “After establishing and confirming the process, manufacturers must maintain the process in a state of control over the life of the process, even as materials, equipment, production environment, personnel, and manufacturing procedures change.” Manufacturers should use ongoing programs to collect and analyze product and process data to evaluate the state of control of the process. These programs may identify process or product problems or opportunities for process improvements that can be evaluated and implemented through some of the activities described in Stages 1 and 2.”

This course focuses on how to establish a systematic approach to implementing statistical methodologies into a process validation program consistent with the FDA guidance. It begins with a primer on statistics, focusing on methods that will be applied in each remaining chapter. Next, it teaches the application of statistics for setting specifications and assessing measurement systems (assays), two foundational requirements for process validation. Lastly, the course applies statistic through the three stages of process validation defined by requirements in the process validation regulatory guidance documents. Methods taught through all three stages are recommended by regulatory guidance documents; references to the specific citations in the guidance documents are provided.


Why you should attend:

The Food and Drug Administration (FDA) provided a guidance for industry in 2011 that has established a framework for process validation in the pharmaceutical industry. This guidance, titled “Process Validation: General Principles and Practices” consists of a three-stage process. The three stages are 1) Process Design, 2) Process Qualification, and 3) Continued Process Verification.

This course focuses on how to establish a systematic approach to implementing statistical methodologies into a process development and validation program consistent with the FDA guidance. This course teaches the application of statistics for setting specifications, assessing measurement systems (assays), using design of experiments (DOE), developing a control plan as part of a risk management strategy, and ensuring process control/capability. All concepts are taught within the three-stage product cycle framework defined by requirements in the process validation regulatory guidance documents.

Although established for the pharmaceutical industry, it also provides a useful framework for other industries.

Analyses in this course use the point-and-click interface of JMP software by SAS.


Areas Covered in the Session

  • apply statistics to set specifications and validate measurement systems (assays)
  • develop appropriate sample plans based on confidence and power
  • implement suitable statistical methods into a process validation program for each of the three stages
  • Stage 1, Process Design: utilize risk management tools to identify and prioritize potential critical process parameters; and define critical process parameters and operating spaces for the commercial manufacturing process using design of experiments (DOE)
  • Stage 2, Process Qualification: assess scale effects while incorporating large (pilot and/or commercial) scale data; develop process performance qualification (PPQ) acceptance criteria by characterizing intra and inter-batch variability using process design data and batch homogeneity studies; and develop an appropriate sampling plan for PPQ
  • Stage 3, Continued Process Verification: develop a control plan as part of a risk management strategy; collect and analyze product and process data; and ensure your process is in (statistical) control and capable.

Who Will Benefit:

This seminar is designed for pharmaceutical and biopharmaceutical professionals who are involved with product and/or process design, validation, or manufacturing/control.

  • Process Scientist/Engineer
  • Design Engineer
  • Product Development Engineer
  • Regulatory/Compliance Professional
  • Design Controls Engineer
  • Six Sigma Green Belt
  • Six Sigma Black Belt
  • Continuous Improvement Manager

Click Here to Continue Learning

Tougher Import Rules for FDA Imports in 2019

Course “Tougher Import Rules for FDA Imports in 2019” has been pre-approved by RAPS as eligible for up to 12 credits towards a participant’s RAC recertification upon full completion.

Background:

FDA and the Customs and Border Patrol Service (CBP) have become increasingly sophisticated and equally demanding in the submission of import information and adherence to government procedures. Firms that fail to understand and properly execute an import and export program find their shipments delayed, detained or refused. As of December 2016, FDA and CBP officially implemented the Automated Commercial Environment (ACE) entry filing system. You either meet ACE requirements or face entry refusals and monetary penalties of up to $10,000 per offense. Other factors can derail the expectation of a seamless import entry process. The course covers detailed information about the roles and responsibilities of the various parties involved with an import operation and how to correct the weakest link(s) in the commercial chain. The course will include tips on how to understand FDA’s thinking, negotiate with the FDA and offer anecdotal examples of FDA’s import program curiosities.


Why you should attend

What happens when your product is detained? FDA will begin a legal process that can become an expensive business debacle. You must respond fully within short timeframes. This is not the time for you to be on a learning curve. You need to have a plan in place and know what you are doing.

The FDA is steadily increasing the legal and prior notice information requirements. If you do not know what those requirements are and you initiate a shipment, your product is figuratively dead in the water. You must be accurate with the import coding information and understand the automated and human review process. If not, you can expect detained shipments. CBP is implemented a new “Automated Commercial Environment” computer program that changes import logistics and information reporting for FDA regulated products. Your shipment may be stopped before it is even loaded at the foreign port.

When products are refused, you have different options. Some options may cost more than others. For example, your product can be seized and destroyed by the government. You may be fined if you do not act in a timely manner. These are common problems that become prohibitively expensive. You should know how to avoid common problems or at least how to mitigate the cost by using established and effective business planning.

Learn how to deal with common problems, such as returns for repair, importing QC samples, and investigational products

On a positive note, the FDA is implementing the Voluntary Qualification Importer Program under the FDA Food Safety and Modernization Act. One other perk is that FDA offers export certificates, for a modest fee, which may give you a competitive advantage in foreign markets. In some cases, a FDA export certificate is required by foreign governments. Finally, the new EU Medical Device Regulation will change how FDA manages foreign inspections and in your favor.

Who Will Benefit:

  • Domestic importers
  • Foreign exporter
  • Initial importers
  • International trade executives
  • Venture Capitalists
  • Marine insurance underwriters
  • Import Brokers
  • Regulatory affairs managers
  • Import / Export consultants
  • In-house counsel
  • Contract specialists
  • Logistics managers
  • Third party establishment inspection entities
  • Sales managers
  • Investors

Day 1 Schedule


Lecture 1:

FDA Legal Authority Customs and Border Control (CBP) Import Process FDA Import Process Registration and documentation


Lecture 2:

FDA Import Process (continued)

  • Import Brokers
  • Prior Notice Information
  • CBP and FDA computer programs
  • Import Codes
  • Bonds and Bonded Warehouses
  • FDA “Notice of Action”

Lecture 3:

Import Delays Import Alerts Detention Refusals

Day 2 Schedule


Lecture 1:

Foreign Inspections FDA 483 – Inspectional Observations


Lecture 2:

FDA Warning Letters and Automatic detention


Lecture 3:

Import Hypothetical FDA Import for Export Program FDA Export Program Export Hypothetical


Lecture 4:

FDA Export Program Special Import Issues

  • Trade Shows
  • Personal Use
  • Compassionate Use

Casper Uldriks

ex-FDA Expert and former Associate Center Director of CDRH

Casper (Cap) Uldriks owns Encore Insight LLC, which provides consulting services on FDA Law. He brings over 32 years of experience from the FDA. He specialized in the FDA’s medical device program as a field investigator, served as a senior manager in the Office of Compliance and as an Associate Center Director for the Center for Devices and Radiological Health. He developed enforcement actions and participated in the implementation of new statutory requirements. He is recognized as an exceptional and energetic speaker. His comments are candid, straightforward and of practical value. He understands how FDA thinks, operates and where it is headed.

Click Here to Continue Learning

Virtual Seminar on 21 CFR Part 11 Compliance for Computer Systems Regulated by FDA

The Webinar will focus on the importance of ensuring that electronic record/electronic signature (ER/ES) capability built into FDA-regulated computer systems meets compliance with 21 CFR Part 11. This includes development of a company philosophy and approach, and incorporating it into the overall computer system validation program and plans for individual systems that have this capability.

FDA’s 21 CFR Part 11 was enacted in the late 1990s and implementation success across the pharmaceutical and other regulated industries has been mixed. There are very specific limitations that arise when using ER/ES capability, such as the elimination of print capability to prevent users from making decisions based on a paper record as opposed to the electronic record. It also requires very specific identification of users that ensures the person signing the record is the same person whose credentials are being entered and verified by the system. Rule for changing passwords must be rigorously adhered to and the passwords must be kept secure.

It is also critical that the system specify the exact meaning of the signature. It may be that the person conducted the work, recorded the result, reviewed the result, or approved the result. A person may simply be attesting to the fact that they reviewed the work and the signatures, and there was appropriate segregation of duties (i.e., the person recording the result is not the same as either the person reviewing or the person giving final approval).

A company must have specific policies and procedures in place that explicitly state responsibilities and provide guidance for implementing and using ER/ES capability. These must clarify the 21 CFR Part 11 regulation and provide insight as to the way the company interprets their responsibility for meeting it. As FDA continues to evolve and change due to the many factors that influence the regulatory environment, companies must be able to adapt.

New technologies will continue to emerge that will change the way companies do business. While many of these are intended to streamline operations, reducing time and resources, some unintentionally result in added layers of oversight that encumber a computer system validation program and require more time and resources, making the technology unattractive from a cost-benefit perspective.

Why you should attend

FDA requires that all computer systems that handle data regulated by the Agency be validated in accordance with their guidance on computerized systems. This guidance was first issued in 1983, and the main points of focus remain consistent today, despite the number of years that have passed and the technology changes that have taken place.

The guidance was revisited for its application to the medical device industry in the 1990s, as the first issuance addressed pharmaceuticals only. In 1997, 21 CFR Part 11 was issued to address electronic records and signatures, as many FDA-regulated organizations began seeking ways to move into a paperless environment.

This guidance has been modified over the years to make it more palatable to industry, and this includes discretionary enforcement measures, but still remains somewhat confusing. The intent was to avoid creating a huge regulatory compliance cost to industry that was initially preventing companies from embracing the technology.

This seminar will help you understand in detail the application of FDA’s 21 CFR Part 11 guidance on electronic records/electronic signatures (ER/ES) for computer systems subject to FDA regulations. This is critical in order to develop the appropriate validation strategy and achieve the thoroughness required to prove that a system does what it purports to do. It also ensures that a system is maintained in a validated state throughout its entire life cycle, from conception through retirement.

ER/ES capability can vary, and the approach should be based on the specific case and the risk of failing to meet the guidance associated with it.

Who Will Benefit

  • Information Technology Analysts
  • Information Technology Managers
  • QC/QA Managers
  • QC/QA Analysts
  • Clinical Data Managers
  • Clinical Data Scientists
  • Analytical Chemists
  • Compliance Managers
  • Laboratory Managers
  • Automation Analysts
  • Manufacturing Managers
  • Manufacturing Supervisors
  • Supply Chain Specialists
  • Computer System Validation Specialists
  • GMP Training Specialists
  • Business Stakeholders responsible for computer system validation planning, execution, reporting, compliance, maintenance and audit
  • Consultants working in the life sciences industry who are involved in computer system implementation, validation and compliance
  • Auditors Engaged in Internal Inspection

Session 1 (90 Mins):

  • FDA Regulatory Oversight
  • Computer System Validation (CSV)
  • System Development Life Cycle (SDLC) Methodology
  • GAMP 5 Software Categorization
  • System Risk Assessment

Session 2 (90 Mins):

  • 21 CFR Part 11 Compliance (Electronic Records/Electronic Signatures)
  • Security, Access, Change Control and Audit Trail
  • Validation Documentation

Session 3 (90 Mins):

  • 7 Most Common Problems with Validation
  • FDA Audit Preparation

Session 4 (90 Mins):

  • Policies and Procedures
  • Training and Organizational Change Management
  • Industry Best Practices and Common Pitfalls
  • Q&A

Speaker Profile

Carolyn (McKillop) Troiano has more than 35 years of experience in the tobacco, pharmaceutical, medical device and other FDA-regulated industries. She has worked directly, or on a consulting basis, for many of the larger pharmaceutical and tobacco companies in the US and Europe, developing and executing compliance strategies and programs. Carolyn is currently active in the Association of Information Technology Professionals (AITP), and Project Management Institute (PMI) chapters in the Richmond, VA area.

During her career, Carolyn worked directly, or on a consulting basis, for many of the larger pharmaceutical companies in the US and Europe. She developed validation programs and strategies back in the mid-1980s, when the first FDA guidebook was published on the subject, and collaborated with FDA and other industry representatives on 21 CFR Part 11, the FDA’s electronic record/electronic signature regulation.

Click Here to Continue Learning

Tougher Import Rules for FDA Imports in 2019

 

Course “Tougher Import Rules for FDA Imports in 2019” has been pre-approved by RAPS as eligible for up to 12 credits towards a participant’s RAC recertification upon full completion.

Description:

FDA and the Customs and Border Patrol Service (CBP) have become increasingly sophisticated and equally demanding in the submission of import information and adherence to government procedures. Firms that fail to understand and properly execute an import and export program find their shipments delayed, detained or refused. As of December 2016, FDA and CBP officially implemented the Automated Commercial Environment (ACE) entry filing system. You either meet ACE requirements or face entry refusals and monetary penalties of up to $10,000 per offense. Other factors can derail the expectation of a seamless import entry process. The course covers detailed information about the roles and responsibilities of the various parties involved with an import operation and how to correct the weakest link(s) in the commercial chain. The course will include tips on how to understand FDA’s thinking, negotiate with the FDA and offer anecdotal examples of FDA’s import program curiosities.

Why you should attend:

What happens when your product is detained? FDA will begin a legal process that can become an expensive business debacle. You must respond fully within short timeframes. This is not the time for you to be on a learning curve. You need to have a plan in place and know what you are doing.

The FDA is steadily increasing the legal and prior notice information requirements. If you do not know what those requirements are and you initiate a shipment, your product is figuratively dead in the water. You must be accurate with the import coding information and understand the automated and human review process. If not, you can expect detained shipments. CBP is implemented a new “Automated Commercial Environment” computer program that changes import logistics and information reporting for FDA regulated products. Your shipment may be stopped before it is even loaded at the foreign port.

Who Will Benefit:

  • Domestic importers
  • Foreign exporter
  • Initial importers
  • International trade executives
  • Venture Capitalists
  • Marine insurance underwriters

Agenda:

Day 1 Schedule

Lecture 1:

FDA Legal Authority Customs and Border Control (CBP) Import Process FDA Import Process Registration and documentation

Lecture 2:

FDA Import Process (continued)

  • Import Brokers
  • Prior Notice Information
  • CBP and FDA computer programs
  • Import Codes
  • Bonds and Bonded Warehouses
  • FDA “Notice of Action”

Lecture 3:

Import Delays Import Alerts Detention Refusals

Day 2 Schedule

Lecture 1:

Foreign Inspections FDA 483 – Inspectional Observations

Lecture 2:

FDA Warning Letters and Automatic detention

Lecture 3:

Import Hypothetical FDA Import for Export Program FDA Export Program Export Hypothetical

Lecture 4:

FDA Export Program Special Import Issues

  • Trade Shows
  • Personal Use
  • Compassionate Use

 

Speaker:

Casper Uldriks

ex-FDA Expert and former Associate Center Director of CDRH

Casper (Cap) Uldriks owns Encore Insight LLC, which provides consulting services on FDA Law. He brings over 32 years of experience from the FDA. He specialized in the FDA’s medical device program as a field investigator, served as a senior manager in the Office of Compliance and as an Associate Center Director for the Center for Devices and Radiological Health. He developed enforcement actions and participated in the implementation of new statutory requirements. He is recognized as an exceptional and energetic speaker. His comments are candid, straightforward and of practical value. He understands how FDA thinks, operates and where it is headed.

Location:  Washington, DC Date: April 4th & 5th, 2019 and Time: 9:00 AM to 6:00 PM

Venue:  WILL BE ANNOUNCED SOON

 

Price:

1 ATTENDEE $2,000, Register for 1 attendee

5 ATTENDEES $10,000, Register for 5 attendees

10 ATTENDEES $20,000, Register for 10 attendees

Until March 10, Early Bird Price: $2,000.00
From March 11 to April 02, Regular Price: $2,200.00

 

Sponsorship Program benefits for seminar

For More Information– 

 

 

Contact us today!

NetZealous LLC DBA GlobalCompliancePanel

john.robinson@globalcompliancepanel.com

Toll free: +1-800-447-9407

Phone: +1-510-584-9661

Website: 

 

Registration Link 

Follow us on LinkedIn: 

Like us our Facebook page: 

Follow us on Twitter: 

 

 

 

The latest computer system industry standards for data [security]

Minimize the validation documentation to reduce costs without increasing regulatory or business risk.

Many companies are outsourcing IT resources and getting involved with Software as a Service (SaaS) and cloud computing. These vendors are not regulated and therefore regulated companies must ensure compliance for both infrastructure qualification and computer system validation. It is the regulated company that wants to avoid FDA form 483s and warning letters. The seminar is intended for regulated companies, software vendors, and SaaS/Cloud providers.

The instructor addresses the latest computer system industry standards for data security, data transfer, audit trails, electronic records and signatures, software validation, and computer system validation.

security

Today the FDA performs both GxP and Part 11 inspections, the Europeans have released an updated Annex 11 regulation that expands Part 11 requirements and companies must update their systems and processes to maintain compliance.

This seminar will help you understand the specific requirements associated with local and SaaS/cloud hosting solutions.

Nearly every computerized system used in laboratory, clinical, manufacturing settings and in the quality process has to be validated.

Participants learn how to decrease software implementation times and lower costs using a 10-step risk-based approach to computer system validation.

Finally, the instructor reviews recent FDA inspection trends and discusses how to streamline document authoring, revision, review, and approval.

Objectives of the Compliant with Part 11:

  • Understand what is expected in 21 CFR Part 11 and Annex 11 inspections
  • Avoid 483 and Warning Letters
  • Learn how to buy COTS software and qualify vendors.
  • Implement a computer system using risk-based validation to gain maximum productivity and reduce cost by as much as two thirds
  • Requirements for local, SaaS, and cloud hosting
  • How to select resources and manage validation projects
  • “Right size” change control methods that allows quick and safe system evolution
  • Minimize the validation documentation to reduce costs without increasing regulatory or business risk
  • Write test cases that trace to elements of risk management
  • Protect intellectual property and keep electronic records safe

21 CFR Part 11/Annex 11 – Compliance for Electronic Records and Signatures:

  • What Part 11 means to you, not just what it says in the regulations
  • Avoid 483 and Warning Letters
  • Explore the three primary areas of Part 11 compliance: SOPs, software product features, and validation documentation
  • How SaaS/cloud computing changes qualification and validation
  • Ensure data integrity, security, and protect intellectual property
  • Understand the current computer system industry standards for security, data transfer, and audit trails
  • Electronic signatures, digital pens, and biometric signatures
  • SOPs required for the IT infrastructure
  • Product features to look for when purchasing COTS software
  • Reduce validation resources by using easy to understand fill-in-the-blank validation documents

Read more at http://bit.ly/2CVLELD_SaaS_Cloud

200+ followers. WOWWWWWW…

followed- 200

Hello Everyone,

Today we have the pleasure of celebrating the fact that we have reached the milestone of 200+ followers on WordPress. Since we started this blog, we have had such a great time connecting with everyone.  we never expected to actually to connect with other people in the blogging community.

we are so incredibly thankful for each and every one of you who follows and comments on my blog posts. Please know that!

we would continue our blogging in these areas FDA Regulation, Medical Devices, Drugs and Biologics, Healthcare Compliance, Biotechnology, Clinical Research, Laboratory Compliance, Quality Management ,HIPAA Compliance ,OSHA Compliance, Risk Management, Trade and Logistics Compliance ,Banking and Financial Services, Auditing/Accounting & Tax, Packaging and Labeling, SOX Compliance, Environmental Compliance, Microsoft Excel Spreadsheet, Geology and Mining, Human Resources Compliance, Food Safety Compliance and etc.

Get more articlehttps://www.globalcompliancepanel.com/freeresources/resource-directory

Please follow us on

Facebook – https://www.facebook.com/TrainingsAtGlobalCompliancePanel

Twitter – https://twitter.com/gcpanel

LinkedIn – https://www.linkedin.com/company/10519587/admin/updates/